Given a non-negative integer num
, repeatedly add all its digits until the result has only one digit.
For example:
Given num = 38
, the process is like: 3 + 8 = 11
, 1 + 1 = 2
. Since 2
has only one digit, return it.
Follow up:
Could you do it without any loop/recursion in O(1) runtime?Hint:
- A naive implementation of the above process is trivial. Could you come up with other methods?
- What are all the possible results?
- How do they occur, periodically or randomly?
- You may find this useful.
这道题让我们求,所谓树根,就是将大于10的数的各个位上的数字相加,若结果还大于0的话,则继续相加,直到数字小于10为止。那么根据这个性质,我们可以写出一个解法如下:
解法一:
class Solution {public: int addDigits(int num) { while (num / 10 > 0) { int sum = 0; while (num > 0) { sum += num % 10; num /= 10; } num = sum; } return num; }};
但是这个解法在出题人看来又trivial又naive,需要想点高逼格的解法,一行搞定碉堡了,那么我们先来观察1到20的所有的树根:
1 1
2 23 34 45 56 67 78 8 9 9 10 111 212 3 13 414 515 616 717 818 919 120 2
根据上面的列举,我们可以得出规律,每9个一循环,所有大于9的数的树根都是对9取余,那么对于等于9的数对9取余就是0了,为了得到其本身,而且同样也要对大于9的数适用,我们就用(n-1)%9+1这个表达式来包括所有的情况,所以解法如下:
解法二:
class Solution {public: int addDigits(int num) { return (num - 1) % 9 + 1; }};